
TECHNICAL NOTE 32 

The quartz crystal model and its frequencies
1. Introduction The region between F1 and F2 is a region of positive 

reactance, and hence is called the inductive region.  
For a given AC voltage across the crystal, the net 
current flow through the crystal is greatest at F1 and 
least at F2.  In loose terms, F1 is referred to as the 
series-resonant frequency and F2 is referred to as the 
parallel-resonant frequency (also called 
antiresonance). 

In this note, we present some of the basic electrical 
properties of quartz crystals.  In particular, we 
present the 4-parameter crystal model, examine its 
resonant and antiresonant frequencies, and determine 
the frequency at load capacitance.  Our coverage is 
brief, yet complete enough to cover most cases of 
practical interest.  For further information, the 
interested reader should consult References [1] 
and [2].  The model and analysis is applicable to most 
types of quartz crystals, in particular tuning-fork, 
extensional-mode, and AT-cut resonators. 

Likewise, we can express the impedance in terms of 
its resistance (real part) and reactance (imaginary 
part) as shown in Figure 2. 

 

1.1 Overview 
To begin, let’s look at the impedance of a real 
20 MHz crystal around its fundamental mode. 

 

Figure 2—Impedance resistance R (log scale) and reactance X 
versus frequency for the same crystal shown in Figure 1. 
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Figure 1—Impedance magnitude |Z| (log scale) and phase θ 
versus frequency for an approximately 20 MHz crystal. 

(Scans made with an Agilent 4294A Impedance Analyzer.) 

In this impedance scan over frequency (Figure 1), we 
see the following qualitative behavior.  There are two 
frequencies F1 and F2 where the phase θ is zero.  
Below and away from F1, the phase is approximately 
-90°.  Near F1 the phase makes a fast transition from 
-90° to +90°.  Between F1 and F2 the phase remains 
approximately constant at +90°.  Near F2 the phase 
makes a fast transition from +90° to -90°.  Lastly, 
above and away from F2, the phase is again 
approximately -90°.  Further, the impedance of the 
crystal is least at F1 and greatest at F2. 

Figure 3—Close-up of reactance X near F1.  The reactance is 
zero at a frequency slightly above 20 MHz. 

The resistance R is strongly peaked at the frequency 
F2.  Below F1, the reactance is negative and increases 
to zero at F1 (see Figure 3) and then increases to large 
positive values as F2 is approached.  At F2, the 
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1.2.3 Frequency at load capacitance reactance quickly decreases to large negative values 
and then again steadily increases towards zero. Another important crystal frequency is the frequency 

FL at a load capacitance CL.  (See Reference [3] for a 
full discussion of this concept.)  At this frequency, 
the crystal reactance X is equal to 

1.2 The crystal frequencies 
1.2.1 The series-resonant frequencies 

Consider the frequency F1.  One can define this in at 
least three ways.  One choice is the (lower) frequency 
Fr where the phase of the crystal is zero.  At this 
zero-phase frequency, the crystal is purely resistive 
(equivalently its reactance is zero).  A second choice 
is the frequency Fm of minimum impedance.  A third 
choice is to define this as the series-resonant 
frequency Fs—a frequency whose definition requires 
the crystal model as discussed in Section 2. 

 
LC

X
ω

1
= , (4) 

where ω = 2πFL.  Equivalently, at this frequency, the 
series combination of the crystal and a capacitance CL 
has zero reactance.  (See Figure 4.)  Note that as 
CL → ∞, FL → Fr, and that as CL decreases, FL 
increases towards Fp. 

Table 3—Frequency at load capacitance 
Table 1—The series-resonant frequencies Frequency  Description 

FL  Frequency at load capacitance Frequency  Description 
Fs  Series resonant frequency 
Fr  Zero-phase frequency (lower) 
Fm  Minimum impedance frequency 

It turns out that for most crystals, Fs, Fr, and Fm are 
all sufficiently close to one another than it is not 
necessary to distinguish between them. 

 . (1) mrs FFF ≈≈

The resulting relation giving the frequency of a 
crystal as a function of its parameters and a load 
capacitance CL is called the crystal-frequency 
equation and is of prime importance in specifying 
and understanding the operation of crystals in 
oscillators.  (See References [3] and [4].) 

Crystal CL  

See Section 6.2 for further details. 

1.2.2 The parallel-resonant frequencies 

Next consider the frequency F2.  One can also define 
this in at least three ways.  One choice is the (upper) 
frequency Fa where the phase of the crystal is zero.  
At this zero-phase frequency, the crystal is purely 
resistive (being very high).  A second choice is the 
frequency Fn of maximum impedance.  A third 
choice is to define this as the parallel-resonant 
frequency Fp—a frequency whose definition also 
requires the crystal model as discussed in Section 2. 

Figure 4—Defining FL at CL 

As we shall see, for most applications, the frequency 
FL at load capacitance CL is well approximated by the 
expression 

 ( )








+

+≈
L

sL CC
CFF
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2
1 . (5) 

1.3 Guide to this note Table 2—The parallel-resonant frequencies 
Frequency  Description 
Fp  Parallel-resonant frequency 
Fa  Zero-phase frequency (upper) 
Fn  Maximum-impedance frequency

For most crystals, Fp, Fa, and Fn are all sufficiently 
close to one another than it is not necessary to 
distinguish between them. 

 . (2) nap FFF ≈≈

Further, they are above Fs and are normally well 
approximated by the expression 

 







+≈

0

1

2
1

C
CFF sp . (3) 

In Section 2, we present and discuss the 4-parameter 
crystal model.  In Section 3, we derive some simple 
results from this model defining Fs and Fp.  In 
Section 4, we define the three non-dimensional 
quantities r, Q, and M.  In Section 5, we present some 
useful properties of the frequencies Fr, Fa, Fs, and Fp.  
In Section 6, we present approximations for FL and Fr 
that go beyond the approximations in Section 1.2.  In 
Section 7, we derive the exact expressions for FL and 
Fr.  In Section 8, we make a few comments on 
resistance at resonance and antiresonance.  Lastly, 
Appendix 1 contains a list of the important symbols 
used in this note. 

Note that while we present both exact and 
approximate relations for Fs, Fr, Fp, Fa, and FL, we 
present no further results for Fm or Fn other than the 
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approximations given in Section 1.2.  For further 
information, see References [5], [6], and [7]. 

For those first becoming acquainted with crystals, we 
recommend reading Sections 1-4.  For those who 
want further details and more precise results, we 
recommend reading Sections 1-6.  Lastly, for those 
who want exact results, we recommend this entire 
note. 

Throughout, we use the usual relation between a 
given frequency f and its angular frequency ω 
counterpart 

 fπ2=ω . (6) 

2. The 4-parameter crystal model 
The modes of interest in quartz crystals are usually 
modeled electrically by the 4-parameter model shown 
in Figure 5.  This model consists of two arms in 
parallel with one another.  The “static arm” consists 
of a single capacitance C0 (also referred to as the 
shunt capacitance).  Herein, this capacitance includes 
the capacitance of the bare crystal and the shunt 
capacitance of its packaging.  The “motional arm” 
consists of the series combination of a resistance R1, 
inductance L1, and a capacitance C1. 

R1 C1 L1 

C0 

 
Figure 5—The 4-parameter crystal model 

While this model is an approximation of the electrical 
characteristics of the crystal, it is a very good one and 
for most purposes more than sufficient.  So, from 
here on, we take this model seriously.  (See 
References [1] and [8] for further discussion.) 

One should be aware that crystals are complicated by 
the existence of many modes of oscillation.  In 
addition to their fundamental mode, crystals have 
overtone modes.  For example, tuning-fork crystals 
have 1st-overtone modes at roughly six times the 
frequency of the fundamental mode.  As another 
example, AT-cut crystals have 3rd, 5th, 7th, etc., 
overtone modes with frequencies being nearly the 
overtone number times the fundamental mode 
frequency.  Sometimes these modes are the desired 
mode as they can offer frequencies that would 
otherwise be unattainable.1  When they are not the 

desired mode, their great separation from the main 
mode and their resistance is normally sufficiently 
high that they have no effect on the performance of 
the crystal in an oscillator.  AT-cut crystals are 
further complicated by the existence of anharmonic 
modes just above the main mode as well as having 
other unwanted modes.  Proper crystal design 
minimizes the strengths of these modes (collectively 
referred to as unwanted modes) so that they have no 
effect on the crystal’s operation in an oscillator. 

2.1 Typical values 
To give the reader some idea of these crystal 
parameters and how they vary with crystal type and 
frequency, we present some typical values for Statek 
crystals.  However, keep in mind that ranges given 
here can be exceeded in some cases. 

The static capacitance C0 has a limited range of 
variation, usually being on the order of 1-3 pF.  This 
parameter typically scales with the motional 
capacitance C1 and package size, i.e. crystals with 
large C1 in large packages have large C0.  Smaller 
crystals also tend to have smaller C1, so C0 roughly 
correlates with package size, but not absolutely. 

Similarly, the motional capacitance C1 has a fairly 
limited range typically being on the order of 0.5 fF to 
10 fF.  Tuning-fork and extensional-mode crystals 
tend to have their C1 lie on the low end of this 
spectrum, while AT-cut crystals can have a C1 just 
about anywhere in this range, depending on the size 
of the crystal and its frequency. 

The motional inductance L1 varies greatly over 
frequency, for as we shall see, it is determined by C1 
and the crystal frequency.  It has a high of roughly 
100 kH for 10 kHz crystals to a low of less than 
1 mH for 100 MHz crystals (a range of about 108 ). 

Lastly, the crystal resistance also varies greatly over 
frequency from a high of about 1 MΩ for 10 kHz 
H-type crystals to a low of about 10 Ω for high-
frequency AT-cut crystals (a range of about 105 ). 

2.2 Specifying crystal parameters 
If your application has critical requirements that 
require specification of the crystal parameters, then 
bounds on the relevant parameters should be 
supplied.  However, unnecessary requirements will 
probably increase the cost of the crystal without any 
added benefit. 

The crystal parameter that most commonly requires 
specification is the crystal resistance R1.  This 
parameter plays an important role in the crystal-
oscillator gain requirement and sometimes an upper                                                            
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3.1 Series resonance bound on R1 is required to ensure the startup of the 
oscillator. 

Being a capacitance, the reactance of the static arm is 
negative.  On the other hand, the motional arm 
consisting of the series combination an inductor and a 
capacitor can have reactance of either sign depending 
on the frequency.  In particular at some frequency Fs, 
called the series-resonant frequency, 

For applications requiring crystal pullability (the 
ability to change frequency with changes in load 
capacitance), bounds should be placed on C1.  As 
shown by Equation (5), C1 plays a primary role in 
determining the frequency change for a given change 
in CL.  The capacitance C0 also plays a role and when 
the pullability requirements are demanding, upper 
bounds are placed on C0. 

 0 . (12) 1 =X

Using Equation (11), we see that the angular 
frequency ωs at which the reactance of the motional 
arm is zero is given by 

Lastly, requirements on L1 are rarely necessary as 
such conditions can be expressed as conditions on C1.  
[See Equation (14).] 

 
11

1
CL

s =ω . (13) Sometimes people place requirements on the 
crystal Q (defined below) in the belief that this 
quantity determines either oscillator startup or crystal 
pullability.  Both are wrong.  The resistance R1 (along 
with the oscillator design) determines startup.  The 
motional capacitance C1 (along with C0) determines 
the crystal pullability.  [See Equation (5).] 

Therefore, the series-resonant frequency of the 
crystal is given by 

 
11

1
π2

1
CL

Fs = . (14) 

3. Simple consequences Equivalently, ignoring the crystal resistance R1, series 
resonance is the frequency at which the crystal 
impedance is minimal (being zero in this 
idealization). 

In this section we derive some simple consequences 
of the crystal model.  In particular, we show the 
existence of a series-resonant frequency Fs and a 
parallel-resonant frequency Fp. 

The impedance Z of the crystal is determined by the 
parallel combination of the impedance Z0 of the static 
arm and the impedance Z1 of the motional arm. 

 
10

10

ZZ
ZZ

Z
+

= . (7) 

Note that one should not use Equation (14) to 
compute Fs as typically neither L1 and C1 are known 
only to about 1% accuracy while other methods can 
determine Fs to better than 1 ppm.  Instead, the utility 
of Equation (14) comes in computing either L1 or C1 
from the other and Fs. 

3.2 Parallel resonance 
The impedance of the static arm is purely reactive 
and is given by 

 , (8) 00 jXZ =

where its reactance X0 is given by 

 
0

0
1
C

X
ω

−= . (9) 

One effect of the static (shunt) capacitance C0 is to 
make the crystal look like a simple capacitance at 
frequencies where the impedance of the motional arm 
is large compared to impedance of the static arm.  
Another is to create an anti-resonance (resonance of 
high impedance) at a frequency where the two arms 
of the crystal resonant in which such a way to offer 
high impedance to current flow. 

Likewise, the impedance of the motional arm is given 
by 

 111 jXRZ += , (10) 

Ignoring the crystal resistance R1, this parallel 
resonance occurs at the frequency where the 
admittance Y = 1/Z of the crystal is zero. 

where its reactance X1 is given by 

 
1

11
1
C

LX
ω

ω −= . (11) 
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 (15) 

Therefore 

 010 =+ XX , (16) 
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or equivalently 
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C
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With this, it follows that the parallel-resonant 
frequency Fp of the crystal is given by 

 
0

11
C
CFF sp += . (18) 

This is the standard crystal-frequency equation.  
However, be aware that it is an approximation.  Even 
so, in most cases this equation is sufficient and a 
more exact expression would complicate the 
computation without any benefit. 

3.4 The significance of L1 
Note that the parallel resonant frequency is always 
above the series-resonant frequency and that their 
separation is determined by the ratio of the 
capacitances C1 and C0.  For quartz crystals, 
C1 << C0, so Fs and Fp are quite close is as fraction of 
absolute frequency and is usually well approximated 
by the expression 

Note that 
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which shows that L1 is proportional to the rate of 
change of the motional reactance with frequency at 
series resonance.  This fact is sometimes useful in 
measuring the crystal parameters.  Note that, ignoring 
the effects of resistance, dX/df = 4πL1 at f = Fs, 
showing that the shunt capacitance C0 does not 
modify the slope of reactance curve at series 
resonance.  However, the shunt capacitance does 
greatly increase the slope of the reactance as 
antiresonance is approached.  (See Figure 2 and 
Figure 3.) 

While the motivation for our definition of the 
parallel-resonant frequency was based on the case 
where the crystal resistance is zero, we take its 
definition in general to be that frequency where the 
reactances of the two arms are in anti-resonance.  
Therefore, the parallel resonant frequency Fp of a 
crystal is always given by Equation (18). 

3.3 FL at CL 
Ignoring the crystal resistance R1, we can easily work 
out the crystal frequency FL at a load capacitance CL.  
This is frequency at which 

4. Three non-dimensional quantities 
There are at least three non-dimensional quantities 
that are very useful in characterizing crystals. 

 

( ) ( ) ,111
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 (20) Our first quantity is the capacitance ratio r 
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0

C
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r = . (25) 

and so 

 ( )LCC
X

+
=

0
1

1
ω

. (21) 

As we saw in Section 3.2, 1/r determines the 
separation between series resonance and parallel 
resonance, in other words, the width of the crystal’s 
inductive region.  As an example, a crystal with a C0 
of 2 pF and a C1 of 5 fF has a capacitance ratio of 
400.  For Statek crystals, r can range from about 250 
to 1,000.2 

With this is it straightforward to show that the 
frequency FL at load capacitance CL is given by 

 )0(   ,1 1
0

1 =
+

+= R
CC

CFF
L

sL . (22) Our next quantity is the crystal quality factor Q.  This 
is defined so that 2π/Q is the fractional energy lost 
per cycle in the crystal and is given in terms of the 
crystal parameters by 

Although this derivation ignores the crystal 
resistance, our final expression is sufficient for most 
applications and in fact is normally further 
approximated by the expression 
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11

1
CR

Q
sω

= . (26) 6. Approximations beyond R1 = 0 
For the zero-phase frequency Fr, the frequency FL at 
load capacitance CL, and crystal resistance at load 
capacitance, we simply present approximate 
expressions that go beyond the results presented so 
far.  For proof, see the exact results in Section 7. 

where the frequency ωs (angular series resonance) is 
given by Equation (13).  Crystals with large Q 
oscillate many cycles before their oscillations decay 
appreciably.  For Statek crystals, Q ranges from 
about 2,000 to 400,000.2 6.1 Approximating FL at CL 
A direct consequence of its definition is that it takes 

 
π2
Q  (27) 

In cases where further accuracy is required in the 
load frequency FL, then to second order in resistance 
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QMCC
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1 1111 .  (32) cycles for the oscillation energy an isolated crystal to 
ramp-down by a factor of 1/e.  The number of cycles 
for ramp-up is the same.  So, the time for oscillations 
to ramp-up or ramp-down in a low-frequency high-Q 
crystal can be quite long—on the order of seconds. 

6.2 Approximating Fr 
Normally, Fr is well approximated by Fs.  To see the 
difference between the two, we must look to second 
order in crystal resistance.  To this order, Fr is 
slightly above Fs by the amount 

Our last quantity is the crystal figure-of-merit M.  
This is simply the ratio of the impedance of the static 
arm to the impedance of the motional arm at series 
resonance.  Given this, it is straightforward to show 
that M is given by 

 
01

1
CR

M
sω

= . (28) 
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11 . (33) 

This result can be obtained from Equation (32) by 
taking the limit CL → ∞ and performing a first-order 
expansion in 1/(QM). As we shall show in Section 7.3, in order for the 

crystal to posses an inductive region, M be greater 
than 2.  For Statek crystals, M ranges from about 10 
to 300.2 

Note our three parameters are not independent; 
indeed 

 . (29) MrQ =

In most cases, QM > 106 so that ignoring the effect of 
resistance is to make an error below 1 part-per-
million in frequency, which is usually acceptable.  
An interesting exception is the case of 10 kHz H-type 
crystals.  The large resistance (about 1 MΩ) of these 
crystals give Q ≈ 4,000 and a figure-of-merit M ≈ 11 
and so that the difference between Fr and Fs is about 
11 ppm. 

5. Some useful frequency properties 
6.3 Approximating R at FL 

5.1 The frequency product property 
It turns out, without approximation, that 

 . (30) psar FFFF =

The crystal resistance R depends on the frequency of 
interest.  At series resonance, R ≈ R1 and it increases 
to very large values near parallel resonance.  (See 
Figure 2.)  A natural question that comes up is what 
is the crystal resistance at the load frequency FL.  It 
turns out to good approximation that 

This equality allows us to calculate any one of the 
above four frequencies given the other three.  
Because of this and the fact that results beyond the 
approximation Fa ≈ Fp are rarely required, we do not 
present any further expressions for Fa. 

 
2

0
1 1 








+≈

LC
C

RR . (34) 

So, as expected, the crystal resistance is 
approximately R1 at Fr and increases to very large 
values as CL approaches zero. 

5.2 The frequency inequalities 
When the crystal posses an inductive region (so Fr 
and Fa exist and are distinct) 

 , (31) pars FFFF ≤<≤
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7. Exact expressions and 
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X
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=Ω . (42) 7.1 Crystal impedance 
We express the crystal impedance Z in terms of the 
impedances of the two parallel arms as follows 
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With these definitions, we can express the crystal 
resistance R as 

 ( )( ) 








Ω+Ω−+
=

− 221 /11
1

Mr
RR , (43) 

and the reactance as 

 ( )( ) 22
0 /11

1
Ω+Ω−+

Ω
−=

−MrX
X . (44) Denoting resistance of the crystal by R (R = Re(Z)) 

and its reactance by X (X = Im(Z)), so that 

7.3 FL at CL (exact)  , jXRZ +=

Using Equation (44) and the fact that X = 1/(ωCL), we 
have 

then Equations (8) and (10), give the following 
expression for the crystal resistance R 
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which gives us the following quadratic equation 
for Ω  

and the following for the crystal reactance X 
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It can be shown that the existence of real frequencies 
requires that 
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1 1112 . (47) It can be shown that Z(ω) sweeps out an approximate 
circle in the impedance plane (and similarly Y(ω) 
sweeps out an approximate circle in the admittance 
plane).  See References [5], [6], and [7] for further 
details. 

Alternatively, for a given crystal, there is a lower 
bound on the allowed load capacitance CL, i.e. 
arbitrarily small load capacitances are not allowed.  
However, this bound is usually so weak that it causes 
no practical limitation to the existence of FL. 

7.2 Normalization 

Define the normalized “frequency” Ω by 

 22

22

sp

s

ωω
ωω

−

−
=Ω . (38) 

Taking the limit CL → ∞, we see that the condition 
for the existence of an inductive region is that 

 
Q

M 12+> , (48) 
Note that Ω = 0 at Fs and Ω = 1 at Fp.  In terms of Ω, 
the (angular) frequency is 

 rs Ω+= 1ωω . (39) 
showing that M must be greater than 2. 

Define the quantity ξ by 
Further set 

 Ω−=Ω 1 . (40) 
 

QMCC L

1
1

1

0
−

+
=ξ . (49) 

Note that 

 
0

1

X
X

−=Ω , (41) 

Note that ξ > 0 by Equation (47).  Further, define the 
quantity χ by 
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8. Final comments on crystal resistance 
Note that the crystal’s resistance at neither Fs nor Fr 
is R1.  Instead, 
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1
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M
RFR s <
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=

−
, (53) 

and 

 12
1

1
)( R

M
RFR r >

−
≈

−
. (54) 

However, normally such distinctions are not required 
as they differ from R1 by much less than 1%. 

Lastly, near antiresonance, 

 , (55) 2
1)( MRFR p ≈

showing that 2M  is roughly the range of the crystal 
resistance over frequency.  (In fact, 2M  is also 
roughly the range of the crystal impedance over 
frequency.) 
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10. Appendix 1—Table of symbols 
 

Table 4—Symbols used to describe crystals 

Symbol  Alternates  Description 
f    Frequency 
ω    Angular frequency, ω = 2π f 
     

C0    Static (shunt) capacitance 
R1  Rm, R1, RR3  Motional resistance 
L1  Lm, L1  Motional inductance 
C1  Cm, C1  Motional capacitance 
     
r    Capacitance ratio, r = C0/C1 
Q    Resonator quality factor, Q = 1/(ωs R1C1) 
M    Figure of merit, M = 1/(ωs R1C1) = Q/r 
     

Fs    Series resonant frequency 
Fr  FR  Lower zero-phase frequency (normally close to Fs) 
Fm    Minimum impedance frequency (normally close to Fs) 

     
Fp    Parallel resonant frequency 
Fa    Upper zero-phase frequency (normally close to Fp) 
Fn    Maximum impedance frequency (normally close to Fp) 
     

FL    Frequency at load capacitance CL 
CL  CL  Load capacitance 
TS    Trim sensitivity, fractional rate-of-change of FL with CL 

     
Z    Crystal impedance, Z =  R+j X = |Z|ejθ 

R    Crystal resistance, R = Re(Z) 
X    Crystal reactance, X = Im(Z) 
θ    Crystal impedance phase angle, θ = arg(Z) 
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3 Strictly speaking, RR (or Rr) refers to the resistance at Fr, however as shown in Section 8, the distinction between RR and R1 is 
rarely worthwhile. 
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